
■ Pufferspeicher HSK P mit einem Edelstahlwarmwassertauscher und Trennblech

Тур	Höhe [mm]	Durchmesser [mm]	Speichervolu- men [l]	Volumen des geliefer- ten Warmwassers [l]**	Bestell- code	Bestellcode Isolierung
HSK 390 P*	1905	550	398	321	13 517	15 242
HSK 600 P	1935	650	560	468	14 175	15 244
HSK 750 P	1975	750	760	548	14 178	15 246
HSK 1000 P	2080	800	925	592	14 555	15 248
HSK 1700 P	2075	1100	1687	1072	14 558	15 250

Pufferspeicher:

8* seitliche angeschweißte Muffen mit Innengewinde G 1" oder G 6/4" - zum Anschluss des Heizsystems und der Wärmequellen

3 seitliche angeschweißte Muffen mit Innengewinde G 6/4"

5 seitliche angeschweißte Muffen mit Innengewinde G 1/2"

1 obere angeschweißte Muffen G 1/2"

Warmwasserbereitung:

2 Seiteneingänge mit Außengewinde G 1"

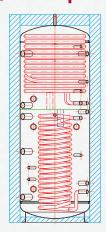
1 seitliche angeschweißte Muffen mit Innengewinde G 6/4"

2 seitliche angeschweißte Muffen mit Innengewinde G 1/2"

- zum Anschluss des elektrischen Heizkörpers

- zum Anschluss der Hülsen für Temperatursensoren

- für das Entlüftungsventil


- zum Befestigen der Pumpengruppe

- Eingang, Ausgang

- zum Anschluss des elektrischen Heizkörpers

- zum Anschluss der Hülsen für Temperatursensoren

■ Pufferspeicher HSK PV mit 2 Edelstahlwarmwassertauschern und Trennblech

Тур	Höhe [mm]	Durchmesser [mm]	Speichervolu- men [l]	Volumen des geliefer- ten Warmwassers [l]**	Bestell- code	Bestellcode Isolierung
HSK 600 PV	1935	650	557	669	16 158	16 160
HSK 750 PV	1975	750	757	784	16 177	16 179
HSK 1000 PV	2080	800	922	846	16 180	16 182
HSK 1700 PV	2075	1100	1684	1533	16 183	16 185

8 seitliche angeschweißte Muffen mit Innengewinde G 1" oder G 6/4" - zum Anschluss des Heizsystems und der Wärmeguellen

3 seitliche angeschweißte Muffen mit Innengewinde G 6/4"

5 seitliche angeschweißte Muffen mit Innengewinde G 1/2"

1 obere Muffen G 1/2"

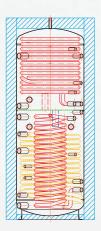
Warmwasserbereitung:

4 Seiteneingänge mit Außengewinde G 1"

1 seitliche angeschweißte Muffen mit Innengewinde G 6/4" 2 seitliche angeschweißte Muffen mit Innengewinde G 1/2"

- zum Anschluss der Hülsen für Temperatursensoren - für das Entlüftungsventil

- zum Befestigen der Pumpengruppe


- Eingang, Ausgang

- zum Anschluss des elektrischen Heizkörpers

- zum Anschluss des elektrischen Heizkörpers

- zum Anschluss der Hülsen für Temperatursensoren

■ Pufferspeicher HSK PR mit 2 Edelstahlwarmwassertauschern* mit Trennblech und Solartauscher

Тур	Höhe	Durch-	Speicher-	Volumen des	Fläche des	Bestell-	Bestell-
	[mm]	messer	volumen	gelieferten Warm-	Solartauschers	code	code
		[mm]	[1]	wassers [l]**	[m²]		Isolierung
HSK 390 PR*	1905	550	394	321	1,5 m ²	14 172	15 243
HSK 600 PR	1935	650	553	669	2,4 m ²	14 187	15 245
HSK 750 PR	1975	750	753	784	2,5 m ²	14 190	15 247
HSK 1000 PR	2080	800	916	846	3,2 m ²	14 012	15 249
HSK 1700 PR	2075	1100	1676	1533	4 m ²	14 013	15 251

 8^* seitliche angeschweißte Muffen mit Innengewinde G 1^* oder G $6/4^*$ - zum Anschluss des Heizsystems und der Wärmequellen

2 seitliche angeschweißte Muffen mit Innengewinde G 1"

2 seitliche angeschweißte Muffen mit Innengewinde G 6/4"

5 seitliche angeschweißte Muffen mit Innengewinde G 1/2"

1 obere Muffen G 1/2"

2 Dorne M6

- zum Anschluss eines Solarsystems

- zum Anschluss des elektrischen Heizkörpers

- zum Anschluss der Hülsen für Temperatursensoren

- für das Entlüftungsventil

- zum Befestigen der Pumpengruppe

Warmwasserbereitung:

4* seitliche angeschweißte Muffen mit Innengewinde mit einem Außengewinde G 1"

1 seitliche angeschweißte Muffen mit Innengewinde G 6/4"

- Eingang, Ausgang - zum Anschluss des elektrischen Heizkörpers

2 seitliche angeschweißte Muffen mit Innengewinde G 1/2"

- zum Anschluss der Hülsen für Temperatursensoren

* HSK 390 PR hat nur einen Edelstahltauscher zur Warmwasserbereitung. Nur 7 seitliche angeschweißte Muffen mit Innengewinde G 1" zum Anschluss eines Heizsystems und Wärmequellen und nur 2 Muffen G1" zur Warmwasserbereitung.

v1.1-02/2017

HSK-Speichers mit einem Trennblech

REGULUS spol. s r.o., Tschechische Republik

^{*} HSK 390 P hat 7 seitliche angeschweißte Muffen mit Innengewinde G 1" zum Anschluss des Heizsystems und der Wärmequellen

^{**} für einen auf 60 °C erwärmten Speicher und eine Ausgangstemperatur von 40 °C bei einem Durchfluss von 8 Litern/Minute ohne Nacherwärmung

HSK-TANKS

Die Pufferspeicher Regulus HSK mit einem Trennblech und Edelstahltauschern zum durchlaufenden Wassererwärmen werden zur Speicherung von Wärme aus solaren thermischen und photovoltaischen Systemen, Wärmepumpen, Kamineinsätzen und anderen Quellen verwendet. Der innen platzierte Edelstahltauscher garantiert den Komfort der Warmwasserlieferungen und verhindert gleichzeitig die Bildung von Legionellen. Das warme Wasser wird effektiv von allen angeschlossenen Quellen erwärmt. Die Teilung des Speichers durch ein Trennblech in zwei Kammern erhöht einerseits die Effizienz von erneuerbaren Quellen und sichert gleichzeitig genug Warmwasser auch beim Erschöpfen der Energie aus dem unteren Teil des Speichers zum Heizen.

AUSREICHENDER WARMWASSERVORRAT

In den technischen Datenblättern der einzelnen Speicher befinden sich Tabellen zum Volumen des gelieferten Warmwassers unter verschiedenen Bedingungen. Zur Illustration ein Beispiel für den Speicher HSK 390 P:

Volumen des gelieferten Warmwassers (Erwärmung von 10 °C auf 40 °C)

Erwärmtes Volumen	Ganzer Speicher 60 °C 10 kW			Ganzer Speicher		Ganzer Speicher		Oberer Teil des Speichers 60 °C 10 kW				
Temperatur im Speicher				60 °C ohne Nacherwärmung			80 °C					
Nacherwärmung							ohne Nacherwärmung					
Durchfluss [l/min]	8	12	20	8	12	20	8	12	20	8	12	20
Warmwasservolumen [l]	534	359	268	321	290	266	567	528	516	253	235	208

ISOLIERUNGEN

Wir liefern Isolierungssets von hoher Qualität, inkl. der Isolierung unter dem Speicher. Hiermit erreichen wir die Energieeffizienzklasse C.

VORTEILE VON SPEICHERN MIT TRENNBLECH

Energieeinsparung dank einer höheren Effizienz der Wärmepumpe und des Solarsystems beim Erwärmen des unteren Teils des Speichers.

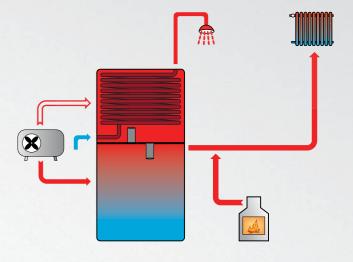
Der Warmwasservorrat steht auch dann zur Verfügung, wenn der untere Teil des Speichers zum Heizen erschöpft ist.

Möglichkeit einer automatischen Zuschaltung von zusätzlichen Energiequellen, getrennt zum Heizen und getrennt für das Warmwasser nach dem Erlöschen des Festbrennstoffkessels und Erschöpfen der Wärme aus dem Speicher.

ZUBEHÖR

Pumpengruppe

Der Speicher ist mit 2 Dornen ausgestattet, auf die eine Solarpumpengruppe gehängt werden kann. Das Aufhängen direkt an den Speicher vereinfacht die Montage und verkürzt die Länge der Anschlussleitung.

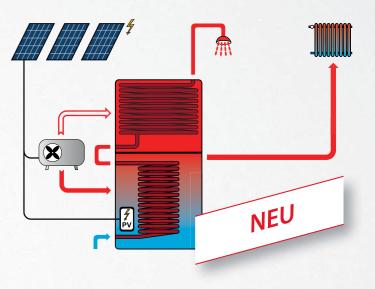


HSK P

Pufferspeicher mit Edelstahlwarmwassertauscher und Trennblech

• Für Wärmepumpen, Biomassekessel

Der Speicher wird meistens in solchen Systemen verwendet, bei welchen die Hauptquelle der Wärme zum Heizen und Wassererwärmen ein Kessel, ein Warmwasserkamineinsatz oder eine Wärmepumpe ist. Die Wärmequellen können auf vorteilhafte Weise kombiniert werden. Außerdem können im Speicher weitere elektrische Heizkörper zur Warmwasserbereitung und zum Heizen installiert werden.

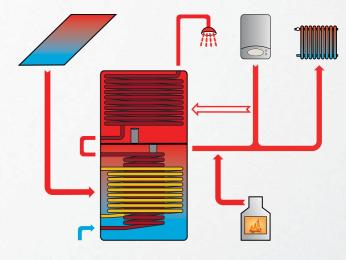


HSK PV

Pufferspeicher mit 2 Edelstahlwarmwassertauschern und einem Trennblech

Für Photovoltaik und Wärmepumpen

Der Speicher wird meistens in solchen Systemen verwendet, bei welchen die Hauptquelle der Wärme zum Heizen und Wassererwärmen eine Wärmepumpe in Kombination mit einem photovoltaischen Kraftwerk ist. Im Speicher befinden sich zwei Edelstahltauscher zur Warmwasserbereitung. Im oberen Teil des Speichers wird ständig eine ausreichende Temperatur für eine sofortige Warmwasserbereitung mit Hilfe eines oberen Austauschers gehalten, der auch zum Erwärmen der Warmwasserzirkulation dient. Für eine größere Speicherung der Wärme aus den Überschüssen des FV-Systems kann das gesamte Volumen des Speichers verwendet werden. Das Warmwasser wird in zwei Schritten aufbereitet, der untere Austauscher dient zum Vorwärmen des Warmwassers. An den Speicher können auch weitere Wärmeguellen angeschlossen werden, diese lassen sich auf vorteilhafte Weise kombinieren. Außer dem extra angeschlossenen Heizkörper für das FV-Kraftwerk können im Speicher weitere elektrische Heizkörper zur Warmwasserbereitung und zum Heizen installiert werden.


HSK PR

Pufferspeicher mit Solartauscher, 2 Edelstahlwarmwassertauschern* und Trennblech

• Für solare Erwärmung und jede weitere Quelle

Der Speicher wird bei Systemen mit einem solaren thermischen System zum Wassererwärmen und zum zusätzlichen Heizen sowie mit jeder weiteren Quelle verwendet. Im unteren Teil des Speichers befinden sich ein Solartauscher und ein Edelstahltauscher zum Wasservorwärmen. Aufgrund dessen arbeitet das solare thermische System unter niedrigeren Temperaturen mit einer höheren Effizienz. Im oberen Teil des Speichers wird ständig eine ausreichende Temperatur für eine sofortige Warmwasserbereitung mit Hilfe eines oberen Austauschers gehalten, der auch zum Erwärmen der Warmwasserzirkulation dient. Die Hauptwärmequelle können eine Wärmepumpe, ein Kamineinsatz, ein Gaskessel bzw. ein Kessel anderer Art sein. Die Wärmequellen können auf vorteilhafte Weise kombiniert werden. Außerdem können im Speicher weitere elektrische Heizkörper zur Warmwasserbereitung und zum Heizen installiert werden.

*HSK 390 PR verfügt nur über einen Edelstahltauscher zur Warmwasserbereitung

